Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 63: 101182, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403065

RESUMO

The German cockroach is a valuable model for research on indoor pest management strategies and for understanding mechanisms of adaptive evolution under intense anthropogenic selection. Under the selection pressure of toxic baits, populations of the German cockroach have evolved a variety of physiological and behavioral resistance mechanisms. In this review, we focus on glucose aversion, an adaptive trait that underlies a behavioral resistance to baits. Taste polymorphism, a change in taste quality of glucose from sweet to bitter, causes cockroaches to avoid glucose-containing baits. We summarize recent findings, including the contribution of glucose aversion to olfactory learning-based avoidance of baits, aversion to other sugars, and assortative mating under sexual selection, which underscores the behavioral phenotype to all oligosaccharides that contain glucose. It is a remarkable example of how anthropogenic selection drove the evolution of an altered gustatory trait that reshapes the foraging ecology and sexual communication.

2.
Curr Biol ; 33(16): 3529-3535.e4, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531958

RESUMO

Insects rely on olfaction to guide a wide range of adaptive behaviors, including mate and food localization, mate choice, oviposition site selection, kin recognition, and predator avoidance.1 In nocturnal insects, such as moths2 and cockroaches,3 mate finding is stimulated predominantly by long-range species-specific sex pheromones, typically emitted by females. During courtship, at close range, males in most moth species emit a blend of pheromone compounds from an everted, often large, pheromone gland. While long-distance communication with sex pheromones has been remarkably well characterized in thousands of moth species,2,4 close-range chemosensory sexual communication remains poorly understood. We reveal that in the moth Chloridea virescens, the male pheromone consists of three distinct classes of compounds: de novo biosynthesized alcohols, aldehydes, acetates, and carboxylic acids that resemble the female's emissions; newly identified compounds that are unique to the male pheromone, such as aliphatic polyunsaturated hydrocarbons; and sequestered plant secondary compounds and hormone derivatives, including methyl salicylate (MeSA). Thus, males employ a mosaic pheromone blend of disparate origins that may serve multiple functions during courtship. We show that two olfactory receptors in female antennae are tuned to MeSA, which facilitates female acceptance of the male. Because MeSA is emitted by plants attacked by pathogens and herbivores,5 the chemosensory system of female moths was likely already tuned to this plant volatile, and males appear to exploit the female's preadapted sensory bias. Interestingly, while female moths (largely nocturnal) and butterflies (diurnal) diverged in their use of sensory modalities in sexual communication,6 MeSA is used by males of both lineages.


Assuntos
Borboletas , Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Corte , Feromônios , Comportamento Sexual Animal
3.
Proc Biol Sci ; 290(1995): 20222337, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987637

RESUMO

Human-imposed selection can lead to adaptive changes in sensory traits. However, rapid evolution of the sensory system can interfere with other behaviours, and animals must overcome such sensory conflicts. In response to intense selection by insecticide baits that contain glucose, German cockroaches evolved glucose-aversion (GA), which confers behavioural resistance against baits. During courtship the male offers the female a nuptial gift that contains maltose, which expediates copulation. However, the female's saliva rapidly hydrolyses maltose into glucose, which causes GA females to dismount the courting male, thus reducing their mating success. Comparative analysis revealed two adaptive traits in GA males. They produce more maltotriose, which is more resilient to salivary glucosidases, and they initiate copulation faster than wild-type males, before GA females interrupt their nuptial feeding and dismount the male. Recombinant lines of the two strains showed that the two emergent traits of GA males were not genetically associated with the GA trait. Results suggest that the two courtship traits emerged in response to the altered sexual behaviour of GA females and independently of the male's GA trait. Although rapid adaptive evolution generates sexual mismatches that lower fitness, compensatory behavioural evolution can correct these sensory discrepancies.


Assuntos
Corte , Comportamento Sexual Animal , Animais , Humanos , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Maltose , Copulação , Glucose
4.
Pest Manag Sci ; 79(8): 2831-2839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935454

RESUMO

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a global pest that feeds on >350 plant species and severely limits production of cultivated grasses, vegetable crops and cotton. An efficient way to detect new invasions at early stages, and monitor and quantify the status of established infestations of this pest is to deploy traps baited with species-specific synthetic sex pheromone lures. RESULTS: We re-examined the compounds in the sex pheromone glands of FAW females by gas chromatography-electroantennogram detector (GC-EAD), GC-mass spectrometry (MS), behavioral and field assays. A new bioactive compound from pheromone gland extracts was detected in low amounts (3.0% relative to (Z)-9-tetradecenyl acetate (Z9-14:OAc), the main pheromone component), and identified as nonanal. This aldehyde significantly increased attraction of male moths to a mix of Z9-14:OAc and (Z)-7-dodecenyl acetate in olfactometer assays. Adding nonanal to this two-component mix also doubled male trap catches relative to the two-component mix alone in cotton fields, whereas nonanal alone did not attract any moths. The addition of nonanal to each of three commercial pheromone lures also increased male catches by 53-135% in sorghum and cotton fields. CONCLUSION: The addition of nonanal to pheromone lures should improve surveillance, monitoring and control of FAW populations. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Atrativos Sexuais/farmacologia , Atrativos Sexuais/química , Spodoptera , Cromatografia Gasosa-Espectrometria de Massas , Feromônios , Aldeídos
5.
J Econ Entomol ; 116(2): 546-553, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36888567

RESUMO

Glucose aversion in the German cockroach, Blattella germanica (L.), results in behavioral resistance to insecticidal baits. Glucose-averse (GA) cockroaches reject foods containing glucose, even in relatively low concentrations, which protects the cockroaches from ingesting lethal amounts of toxic baits. Horizontal transfer of baits and the resulting secondary mortality have been documented in German cockroaches, including in insecticide resistant strains. However, the effects of the GA trait on secondary mortality have not been investigated. We hypothesized that ingestion of insecticide baits that contain glucose or glucose-containing disaccharides would result in behaviorally relevant glucose levels in the feces, possibly deterring coprophagy by GA nymphs. We fed adult female cockroaches hydramethylnon baits rich in either glucose, fructose, sucrose, or maltose and compared secondary mortality of GA and wild-type (WT) nymphs via coprophagy. When adult females were fed baits containing glucose, sucrose, or maltose and their feces offered to nymphs, secondary mortality was significantly lower in GA nymphs than in WT nymphs. However, survival of GA and WT nymphs was similar on feces generated by adult females fed fructose bait. Analysis of feces indicated that disaccharides in baits were hydrolyzed into glucose, some of which was excreted in the feces of females that ingested the bait. Based on these results, we caution that baits containing glucose or glucose-containing oligosaccharides may impede cockroach interventions; while GA adults and large nymphs avoid ingesting such baits, first instars reject the glucose-containing feces of any WT cockroaches that consumed the bait.


Assuntos
Blattellidae , Baratas , Inseticidas , Feminino , Animais , Glucose/farmacologia , Dissacarídeos/farmacologia , Maltose/farmacologia , Inseticidas/farmacologia , Sacarose , Ninfa , Frutose/farmacologia
6.
J Econ Entomol ; 116(2): 529-537, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36734002

RESUMO

Gel bait formulations of insecticides have been shown to be highly effective in managing German cockroach (Blattella germanica L. [Blattodea: Ectobiidae]) populations. Three potential reasons for this are high palatability of baits, the use of slow-acting insecticides, and their horizontal transfer within aggregations, a phenomenon known as 'secondary mortality'. Our objective was to determine whether horizontal transfer can go beyond secondary, to tertiary and quaternary effects, and to compare various gel baits with different active ingredients. We fed adult females a bait and recorded their bait consumption, moribundity, and mortality. Groups of first instars were then exposed to the dead females and their feces, secondary mortality was quantified, and a new cohort of nymphs was then exposed to the feces and dead nymphs (for tertiary mortality); this process was repeated for quaternary mortality. This design did not distinguish among the major mechanisms of horizontal transfer of insecticides, namely coprophagy and contact with feces, exposure to regurgitated fluids, and cannibalism and necrophagy of nymphs. All the tested baits caused 100% mortality of the adult females that directly fed on the bait and high secondary mortality (average of >85%) within 48 hr. Baits containing either dinotefuran, emamectin benzoate, fipronil, or indoxacarb caused tertiary mortality (average of 15-70%), but only the fipronil and indoxacarb baits caused some quaternary mortality. The relative importance of secondary, tertiary, and quaternary transfer of the active ingredient remains to be determined in field populations of the German cockroach.


Assuntos
Blattellidae , Baratas , Inseticidas , Feminino , Animais , Ninfa , Controle de Insetos
7.
PLoS One ; 17(8): e0271344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921282

RESUMO

An integral part of the courtship sequence of the German cockroach (Blattella germanica) involves the male raising his wings to expose tergal glands on his dorsum. When a female cockroach feeds on the secretion of these glands, she is optimally positioned for mating. Core chemical components have been identified, but the effect of male diet on the quality of the tergal gland secretion remains unexplored. After validating the pivotal role of tergal feeding in mating, we starved or fed reproductively mature males for one week. We then paired each male with a sexually receptive female and observed their interactions through an infrared-sensitive camera. While starvation had no effect on male courtship behavior, it did influence the duration of female tergal feeding and mating outcomes. Females fed longer on the gland secretion of fed males, and fed males experienced greater mating success than starved males (73.9% vs. 48.3%, respectively). These results suggest that the quality of the tergal gland secretions, and by association mating success, are dependent on the nutritional condition of the male.


Assuntos
Blattellidae , Corte , Glândulas Exócrinas , Fenômenos Fisiológicos da Nutrição , Animais , Blattellidae/fisiologia , Glândulas Exócrinas/fisiologia , Feminino , Masculino , Reprodução , Comportamento Sexual Animal , Asas de Animais
8.
Sci Rep ; 12(1): 14498, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008434

RESUMO

The importance of plant chemistry in the host specialization of phytophagous insects has been emphasized. However, only a few chemicals associated with host shifting have been characterized. Herein, we focus on the leaf-mining moth Acrocercops transecta (Gracillariidae) consisting of ancestral Juglans (Juglandaceae)- and derived Lyonia (Ericaceae)-associated host races. The females of the Lyonia race laid eggs on a cover glass treated with an L. ovalifolia leaf extract; the extract was fractionated using silica gel and ODS column chromatography to isolate the oviposition stimulants. From a separated fraction, two analogous Lyonia-specific triterpenoid glycosides were characterized as oviposition stimulants. Furthermore, we observed probable contact chemosensilla on the distal portion of the female antennae. Lyonia race females laid their eggs on the non-host Juglans after the leaves were treated with a Lyonia-specific oviposition stimulant, although they do not lay eggs on Juglans. These results suggest that Lyonia race females do not lay eggs on Juglans leaves because the leaves do not contain specific oviposition stimulant(s). Otherwise, the activity of the oviposition stimulants overcomes oviposition deterrents contained in Juglans leaves. This paper describes the roles of plant chemicals in the different preferences between host races associated with distantly related plant taxa.


Assuntos
Ericaceae , Juglandaceae , Juglans , Mariposas , Animais , Feminino , Oviposição , Folhas de Planta
9.
Commun Biol ; 5(1): 450, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551501

RESUMO

The evolution of adaptive behavior often requires changes in sensory systems. However, rapid adaptive changes in sensory traits can adversely affect other fitness-related behaviors. In the German cockroach, a gustatory polymorphism, 'glucose-aversion (GA)', supports greater survivorship under selection with glucose-containing insecticide baits and promotes the evolution of behavioral resistance. Yet, sugars are prominent components of the male's nuptial gift and play an essential role in courtship. Behavioral and chemical analyses revealed that the saliva of GA females rapidly degrades nuptial gift sugars into glucose, and the inversion of a tasty nuptial gift to an aversive stimulus often causes GA females to reject courting males. Thus, the rapid emergence of an adaptive change in the gustatory system supports foraging, but it interferes with courtship. The trade-off between natural and sexual selection under human-imposed selection can lead to directional selection on courtship behavior that favors the GA genotype.


Assuntos
Corte , Comportamento Sexual Animal , Animais , Feminino , Glucose , Humanos , Masculino , Açúcares , Paladar
10.
Insects ; 12(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442290

RESUMO

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.

11.
J Econ Entomol ; 114(5): 2189-2197, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260722

RESUMO

The German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae), is a common pest of human-built structures worldwide. German cockroaches are generalist omnivores able to survive on a wide variety of foods. A number of studies have concluded that laboratory-reared B. germanica self-select diets with an approximate 1P:3C (protein-to-carbohydrate) ratio. We predicted that field-collected insects would exhibit more variable dietary preferences, related to the wide-ranging quality, quantity, and patchiness of foods available to them. We compared diet self-selection of B. germanica within apartments and in the laboratory by offering them a choice of two complementary diets with 1P:1C and 1P:11C ratios. We observed high variation in the population-level self-selection of these diets among individual apartment sites as well as among various life stages tested in laboratory-based assays. Significant differences between populations in various apartments as well as between populations maintained in the laboratory suggested that factors beyond temporary food scarcity influence diet choice. Nevertheless, we found significant correlations between the amounts of diets ingested by cockroaches in apartments and cockroaches from the same populations assayed in the laboratory, as well as between males, females, and nymphs from these populations. These findings suggest that females, males, and nymphs within apartments adapt to the local conditions and convergently prefer similar amounts of food of similar dietary protein content.


Assuntos
Blattellidae , Animais , Dieta , Feminino , Laboratórios , Masculino , Ninfa
12.
Artigo em Inglês | MEDLINE | ID: mdl-33956595

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Assuntos
Phlebotomus/microbiologia , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fosfatidiletanolaminas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/metabolismo
13.
Insects ; 12(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801079

RESUMO

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.

14.
Pest Manag Sci ; 77(2): 877-885, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32949086

RESUMO

BACKGROUND: Insect growth regulators disrupt insect development and reproduction. Chitin synthesis inhibitors (CSIs) allow the insect to grow normally, but because chitin is an essential component of the cuticle, formation of a new cuticle and ecdysis are prevented and the insect dies. CSIs can also kill embryos by disrupting their normal development. We evaluated the potential utility of novaluron in bait formulations against the German cockroach (Blattella germanica L.). RESULTS: The minimum novaluron intake that interfered with molting and reproduction was assessed by exposing nymphs and adult females to novaluron. Results showed that 1 day of feeding on 0.1% novaluron was sufficient to disrupt molting in nymphs and prevent adult females from developing viable oothecae. The long-term effects on gravid females were investigated by feeding females 0.1% novaluron for different 5-day intervals during successive stages of gestation. Results demonstrated that gravid females fed novaluron during any period of gestation were able to produce viable eggs. To determine if ingestion of novaluron affected mating success and fertility of adult males, males were fed novaluron and then allowed to mate with untreated virgin females. Males that fed on novaluron successfully mated, and the females produced viable oothecae. Finally, direct comparisons revealed that novaluron is equally effective by ingestion and topical application. CONCLUSIONS: Novaluron caused mortality in nymphs and interfered with ootheca production in adult females, but only before they formed an ootheca. It successfully reduced German cockroach populations in cages and has potential to be incorporated in cockroach baits.


Assuntos
Blattellidae , Inseticidas , Animais , Baratas , Ingestão de Alimentos , Feminino , Masculino , Compostos de Fenilureia , Reprodução
15.
G3 (Bethesda) ; 10(9): 3453-3460, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727922

RESUMO

Spontaneous grooming behavior is a component of insect fitness. We quantified spontaneous grooming behavior in 201 sequenced lines of the Drosophila melanogaster Genetic Reference Panel and observed significant genetic variation in spontaneous grooming, with broad-sense heritabilities of 0.25 and 0.24 in females and males, respectively. Although grooming behavior is highly correlated between males and females, we observed significant sex by genotype interactions, indicating that the genetic basis of spontaneous grooming is partially distinct in the two sexes. We performed genome-wide association analyses of grooming behavior, and mapped 107 molecular polymorphisms associated with spontaneous grooming behavior, of which 73 were in or near 70 genes and 34 were over 1 kilobase from the nearest gene. The candidate genes were associated with a wide variety of gene ontology terms, and several of the candidate genes were significantly enriched in a genetic interaction network. We performed functional assessments of 29 candidate genes using RNA interference, and found that 11 affected spontaneous grooming behavior. The genes associated with natural variation in Drosophila grooming are involved with glutamate metabolism (Gdh) and transport (Eaat); interact genetically with (CCKLR-17D1) or are in the same gene family as (PGRP-LA) genes previously implicated in grooming behavior; are involved in the development of the nervous system and other tissues; or regulate the Notch and Epidermal growth factor receptor signaling pathways. Several DGRP lines exhibited extreme grooming behavior. Excessive grooming behavior can serve as a model for repetitive behaviors diagnostic of several human neuropsychiatric diseases.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Animais , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Variação Genética , Asseio Animal
16.
Proc Biol Sci ; 287(1921): 20192466, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32097587

RESUMO

Once emitted, semiochemicals are exposed to reactive environmental factors that may alter them, thus disrupting chemical communication. Some species, however, might have adapted to detect environmentally mediated breakdown products of their natural chemicals as semiochemicals. We demonstrate that air, water vapour and ultraviolet (UV) radiation break down unsaturated cuticular hydrocarbons (CHCs) of Periplaneta americana (American cockroach), resulting in the emission of volatile organic compounds (VOCs). In behavioural assays, nymphs strongly avoided aggregating in shelters exposed to the breakdown VOCs from cuticular alkenes. The three treatments (air, water vapour, UV) produced the same VOCs, but at different time-courses and ratios. Fourteen VOCs from UV-exposed CHCs elicited electrophysiological responses in nymph antennae; 10 were identified as 2-nonanone, 1-pentanol, 1-octanol, 1-nonanol, tetradecanal, acetic acid, propanoic acid, butanoic acid, pentanoic acid and hexanoic acid. When short-chain fatty acids were tested as a mix and a blend of the alcohols and aldehyde was tested as a second mix, nymphs exhibited no preference for control or treated shelters. However, nymphs avoided shelters that were exposed to VOCs from the complete 10-compound mix. Conditioned shelters (occupied by cockroaches with faeces and CHCs deposited on the shelters), which are normally highly attractive to nymphs, were also avoided after UV exposure, confirming that breakdown products from deposited metabolites, including CHCs, mediate this behaviour. Our results demonstrate that common environmental agents degrade CHCs into behaviourally active volatile compounds that potentially may serve as necromones or epideictic pheromones, mediating group dissolution.


Assuntos
Alcenos/metabolismo , Comportamento Animal/fisiologia , Periplaneta/fisiologia , Feromônios/metabolismo , Animais , Hidrocarbonetos/metabolismo , Comportamento Social , Compostos Orgânicos Voláteis
17.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478483

RESUMO

Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The doublesex transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. dsx splicing depends on transformer, which is also alternatively spliced such that functional Tra is only present in females. This pathway has evolved from an ancestral mechanism where dsx was independent of tra and expressed and required only in males. To reconstruct this transition, we examined three basal, hemimetabolous insect orders: Hemiptera, Phthiraptera, and Blattodea. We show that tra and dsx have distinct functions in these insects, reflecting different stages in the changeover from a transcription-based to a splicing-based mode of sexual differentiation. We propose that the canonical insect tra-dsx pathway evolved via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to dedicated regulator of dsx).


Assuntos
Processamento Alternativo , Baratas/fisiologia , Hemípteros/fisiologia , Proteínas de Insetos/biossíntese , Ftirápteros/fisiologia , Desenvolvimento Sexual , Fatores de Transcrição/biossíntese , Animais , Baratas/genética , Hemípteros/genética , Proteínas de Insetos/genética , Ftirápteros/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Fatores de Transcrição/genética
18.
Environ Entomol ; 48(3): 546-553, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034573

RESUMO

Aggregation can be adaptive by providing protection from predators, facilitating thermoregulation, and expediting the location of food, shelter, and mates. German cockroaches Blattella germanica L. (Blattodea: Ectobiidae), are obligatory commensals in human-built structures, where they aggregate in crevices during the day. The source of the aggregation pheromone that drives this behavior and its chemical identity remain unclear. Cuticular hydrocarbons (CHCs) in feces have been proposed to serve as aggregation pheromone, but this function has not been investigated in relation to visual and tactile cues that mediate aggregation. Our objective was to delineate how CHCs in the feces and on the cockroach body operate in conditions that reflect the German cockroach's ecology-either applied to shelters, representing fecal deposition, or to previously extracted cockroaches, representing shelter co-habitation with other cockroaches. Cockroaches and feces-conditioned filter papers were extracted, CHCs were purified by flash chromatography, and two-choice behavior assays were performed with first instar nymphs. Our results confirmed that nymphs preferred to rest within feces-conditioned shelters. However, purified CHCs did not elicit more aggregation than solvent-treated control shelters. Nymphs significantly preferred to rest in shelters that contained a CHC-free dead female, but the addition of CHCs to the female did not enhance aggregation. Nymphs preferred to aggregate with the CHC-free female over CHC-treated shelters. Finally, a methanol extract of feces was highly effective at eliciting aggregation, contesting previous reports that fecal CHCs serve as aggregation pheromone. We assert that CHCs play a minor, if any, role in the aggregation behavior of German cockroaches.


Assuntos
Blattellidae , Baratas , Animais , Fezes , Feminino , Humanos , Hidrocarbonetos , Ninfa , Feromônios
19.
Sci Rep ; 9(1): 2942, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814635

RESUMO

The antennae of adult male German cockroaches detect a contact sex pheromone embedded in the female's cuticular lipids. The female pheromone stimulates courtship behavior in males, notably a wing-raising (WR) display. Within aggregations, however, cuticular lipids are disseminated by contact among group members, including nymphs and adults of both sexes, and "contamination" of cockroaches with the cuticular lipids of another stage or sex may interfere with sex discrimination and disrupt courtship. We used behavioral observations, bioassays and chemical analysis to determine how males maintain their sensitivity to sex pheromone in aggregations. Males contaminated with female pheromone displayed lower courtship, because residual female pheromone on their antennae adapted their peripheral sensilla and habituated the central nervous system. Female pheromone that contaminated the male's antennae also elicited courtship from other non-contaminated males, disrupting their sex discrimination in the group. However, antennal grooming effectively removed female pheromone from males' antennae and maintained their chemosensory acuity and sexual discrimination among group members. Thus, grooming of the antennae and other sensory appendages is an important strategy to enhance sensory acuity, especially in group-living insects like the German cockroach.


Assuntos
Antenas de Artrópodes/fisiologia , Blattellidae/fisiologia , Corte , Asseio Animal/fisiologia , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Lipídeos
20.
J Econ Entomol ; 111(6): 2772-2781, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30192952

RESUMO

Boric acid has been used as an insecticide in the successful control of agricultural, public health and urban pests long before the advent of synthetic organic pesticides. Boric acid products, formulated as dusts, sprays, granular baits, pastes, gels, and liquids, are widely available to consumers and pest management professionals, especially to control pest infestations within homes. Boric acid dust is commonly used against bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), but its efficacy has not been demonstrated. We evaluated the efficacy of boric acid as an ingestible and residual contact insecticide on bed bugs, and compared its efficacy on the German cockroach (Blattella germanica L. [Blattodea: Ectobiidae]) which is known to be susceptible to boric acid by both routes. Dose-response studies of 0-5% boric acid in blood demonstrated that ingested boric acid caused rapid mortality at concentrations of ≥2%, and even 0.5% and 1% boric acid caused 100% mortality, albeit at a slower time course. In contrast, bed bugs survived contact with high concentrations of boric acid dust. Smaller boric acid particles did not increase mortality of either unfed or recently fed bed bugs. The same boric acid products were effective at causing mortality of German cockroaches by both contact and ingestion. We thus conclude that although boric acid is an excellent candidate active ingredient for an ingestible bait formulation, residual applications of dust or spray would be ineffective in bed bug interventions.


Assuntos
Percevejos-de-Cama , Ácidos Bóricos/administração & dosagem , Inseticidas/administração & dosagem , Animais , Blattellidae , Ingestão de Alimentos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...